Comparative Study of Fertilizers in Tomato-Grown Soils: Soil Quality, Sustainability, and Carbon/Water Foot-prints      

5  99   2024/06/09           Cite
Authors:

Adele Muscolo ( amuscolo@unirc.it )

Abstract :

The primary objective of this research is to assess the impact of a developed eco-friendly fertilizer, named SBO, arising from the blend of organic and mineral components derived from sulfur and orange wastes bound together with bentonite. This study compares SBO with horse manure and NPK on two diverse tomato-growing soils. The environmental implications of these fertilizers with a specific focus on their carbon and water footprints were evaluated. Soils were analyzed and carbon and water footprints were assessed. The results reveal substantial enhancements in soil quality with SBO. Both soils showed a neutral pH, an increase in organic matter content, and heightened microbial biomass. SBO-treated soils exhibit notably superior enzyme activities. The LCA results affirm the sustainability of the SBO-based system, boasting the lowest CF, while NPK demonstrates the highest environmental impact. WF analysis aligns with these findings, indicating that SBO necessitates the least water for tomato production. This study evidence the importance of adopting sustainable fertilization practices for enhancing soil quality and reducing environmental footprints in agriculture.

Keywords :

["carbon footprint","soil fertility","soil quality","sustainability","waterfoot print"]

Disciplines :

Biology and Life Sciences

Subdisciplines :

Biochemistry, Ecology, Environmental Science

Video Type :

2D

Publishing Licence :

Open-access

Submitted On :

2024/06/03

References :

{Rosenzweig, C.; Mbow, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.T.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Climate change responses benefit from a global food system approach. Nat. Food. 2020, 1, 94–97.

Blandford, D.; Hassapoyannes, K. The Role of Agriculture in Global GHG Mitigation; Food, Agriculture and Fisheries Papers; OECD: Paris, France, 2018.

Rouwenhorst, K.H.R.; Travis, A.S.; Lefferts, L. 1921–2021: A Century of Renewable Ammonia Synthesis. Sustain. Chem. 2022, 3, 149–171.

Wolf, S.; Teitge, J.; Mielke, J.; Schütze, F.; Jaeger, C. The European Green Deal—More Than Climate Neutrality. Intereconomics 2021, 56, 99–107.

Schlesinger, W.H.; Andrews, J.A. Soil respiration and the global carbon cycle. Biogeochemistry 2000, 48, 7–20.

Pan, S.Y.; He, K.H.; Lin, K.T.; Fan, C.; Chang, C.T. Addressing nitrogenous gases from croplands toward low-emission agriculture. NPJ Clim. Atmos. Sci. 2022, 5, 43.

Hinckley, E.L.S.; Crawford, J.T.; Fakhraei, H.; Driscoll, C.T. A shift in sulfur-cycle manipulation from atmospheric emissions to agricultural additions. Nat. Geosci. 2020, 13, 597–604.

Haneklaus, S.; Bloem, E.; Schnug, E. History of Sulfur Deficiency in Crops. Sulfur A Missing Link between Soils Crops Nutr. 2008, 50, 45–58.

Głowacka, A.; Gruszecki, T.; Szostak, B.; Michałek, S. The response of common bean to sulphur and molybdenum fertilization. Int. J. Agron. 2019, 3830712.

Głowacka, A.; Jariene, E.; Flis-Olszewska, E.; KiełtykaDadasiewicz, A. The Effect of Nitrogen and Sulphur Application on Soybean Productivity Traits in Temperate Climates Conditions. Agronomy 2023, 13, 780.

Pandurangan, S.; Sandercock, M.; Beyaert, R.; Conn, K.L.; Hou, A.; Marsolais, F. Differential response to sulfur nutrition of two common bean genotypes differing in storage protein composition. Front. Plant Sci. 2015, 6, 92.

Kulczycki, G. The Effect of Elemental Sulfur Fertilization on Plant Yields and Soil Properties. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2021; ISBN 0065-2113.

Malik, K.M.; Khan, K.S.; Billah, M.; Akhtar, M.S.; Rukh, S.; Alam, S.; Munir, A.; Mahmood Aulakh, A.; Rahim, M.; Qaisrani, M.M.; et al. Organic Amendments and Elemental Sulfur Stimulate Microbial Biomass and Sulfur Oxidation in Alkaline Subtropical Soils. Agronomy 2021, 11, 2514.

Liang, Q.; Chen, H.; Gong, Y.; Yang, H.; Fan, M.; Kuzyakov, Y. Effects of 15 years of manureand mineral fertilizers on enzyme activities in particle-size fractions in a North China Plain soil. Eur. J. Soil Biol. 2014, 60, 112–119.

Zhongqi, H.E.; Pagliari, P.H.; Waldrip, H.M. Applied and environmental chemistry of animal manure: A review. Pedosphere 2016, 26, 779–816.

Tabak, M.; Lisowska, A.; Filipek-Mazur, B. Bioavailability of Sulfur from Waste Obtained during Biogas Desulfurization and the Effect of Sulfur on Soil Acidity and Biological Activity. Processes 2020, 8, 863.

Holatko, J.; Brtnicky, M.; Mustafa, A.; Kintl, A.; Skarpa, P.; Ryant, P.; Baltazar, T.; Malicek, O.; Latal, O.; Hammerschmiedt, T. Effect of Digestate Modified with Amendments on Soil Health andPlant Biomass under Varying Experimental Durations. Materials 2023, 16, 1027.

Heinze, S.; Hemkemeyer, M.; Schwalb, S.A.; Khan, K.S.; Joergensen, R.G.; Wichern, F. Microbial Biomass Sulphur—An Important Yet Understudied Pool in Soil. Agronomy 2021, 11, 1606.

Muscolo, A.; Mallamaci, C.; Settineri, G.; Calamarà, G. Increasing soil and crop productivity by using agricultural wastes pelletized with elemental sulfur and bentonite. Agron. J. 2007, 109, 1900–1910.

Muscolo, A.; Romeo, F.; Marra, F.; Mallamaci, C. Transforming agricultural, municipal and industrial pollutant wastes into fertilizers for a sustainable healthy food production. J. Environ. Manag. 2021, 17, 113771.

Panuccio, M.R.; Attinà, E.; Basile, C.; Muscolo, A. Use of Recalcitrant Agriculture Wastes to Produce Biogas and Feasible Biofertilizer. Waste Biomass Val. 2016, 7, 267–280.

Panuccio, M.R.; Papalia, T.; Attinà, E.; Giuffrè, A.; Muscolo, A. Use of digestate as an alternative to mineral fertilizer: Effects on growth and crop quality. Arch. Agron. Soil Sci. 2019, 65, 700–711.

FAO: Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org (accessed on 6 June 2023).

Pishgar-Komleh, S.H.; Akram, A.; Keyhani, A.; Raei, M.; Elshout, P.M.F.; Huijbregts, M.A.J.; van Zelm, R. Variability in the carbon footprint of open-field tomato production in Iran—A case study of Alborz and East-Azerbaijan provinces. J. Clean. Prod. 2017, 142, 1510–1517.

Hillier, K.; Hawes, C.; Squire, G.; Hilton, A.; Wale, S.; Smith, P. Carbon footprints of food crop production. Int. J. Agric. Sustain. 2009, 7, 107–118.

Lee, J.; Six, J.; King, A.P.; Kessel, C.V.; Rolston, E.D. Tillage and feld scale controls on greenhouse gas emissions. J. Environ. Qual. 2006, 35, 714–725.

Aldaya, M.M.; Hoekstra, A.Y. The water needed for Italians to eat pasta and pizza. Agric. Syst. 2010, 103, 351–360.

Chapagain, A.K.; Orr, S. An improved water footprint methodology linking global consumption to local water resources: A case of Spanish tomatoes. J. Environ. Manag. 2009, 90, 1219–1228.

Page, G.; Ridoutt, B.; Bellotti, B. Carbon and water footprint tradeoffs in fresh tomato production. J. Clean. Prod. 2012, 32, 219–222.

FAO. Methods of Analysis for Soils of Arid and Semi-Arid Regions; Food and Agricultural Organization: Rome, Italy, 2007; p. 57.

Bouyoucos, G.J. Hydrometer method improved for making particle size analysis of soils. Agron. J. 1962, 54, 464–465.

Mehlich, A. Rapid Determination of Cation and Anion Exchange Properties and pHe of Soils. J. Assoc. Off. Agric. Chem. 1953, 36, 445–457.

Walkley A, Black IA An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38.

Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoff in organishen Kopern. Anal. Chem 1883, 22, 354–358.

Kaminsky, R.; Muller, W.H. The extraction of soil phytotoxins using neutral EDTA solution. Soil Sci. 1977, 124, 205–210.

Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707.

Von Mersi, W.; Schinner, F. An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biol. Fertil. Soils 1991, 11, 216–220.

Kuush, H.; Bjorklund, M.; Rystrion, L. Purification and characterization of a novel bromoperoxidase-catalase isolated from bacteria found in recycle pulp white water. Enzym. Microb. Technol. 2001, 28, 617–624.

Adam, G.; Duncan, H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 2001, 33, 943–951.

Valášková, V.; Šnajdr, J.; Bittner, B.; Cajtham, T.; Merhautová, V.; Hofrichter, M.; Baldrian, P. Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biol. Biochem. 2007, 39, 2651–2660.

Sidari, M.; Ronzello, G.; Vecchio, G.; Muscolo, A. Influence of slope aspects on soil chemical and biochemical properties in a Pinus laricio forest ecosystem of Aspromonte (Southern Italy). Eur. J. Soil Biol. 2008, 44, 364–372.

Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fert. Soils 1988, 6, 68–72.

UNI EN ISO 14044:2006; Environmental Management, Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.

Maffia, A.; Palese, A.M.; Pergola, M.; Altieri, G.; Celano, G. The Olive-Oil Chain of SalernoProvince (Southern Italy): A LifeCycle Sustainability Framework. Horticulturae 2022, 8, 1054.

PCR- Product Category Rules. Arable and Vegetable Crops un CPC 011, 012, 014, 017, 0191. Version 1.0.1 Valid ultil: 7 December 2024. Available online: https://environdec.com/pcr-library/with-documents (accessed on 10 April 2023).
Pergola, M.; Persiani, A.; Pastore, V.; Palese, A.M.; Arous, A.; Celano, G. A comprehensive Life Cycle Assessment (LCA) of three apricot orchard systems located in Metapontino area (Southern Italy). J. Clean. Prod. 2017, 142, 4059–4071.

Hauschild, M.Z. Estimating pesticide emissions for LCA of agricultural products. In Agricultural Data for Life Cycle Assessments; Weidema, B.P., Meeusen, M.J.G., Eds.; LCA Net Food: The Hague, The Netherlands, 2000; Volume 2, pp. 64–79.

CML; Bureau, B.G. Life Cycle Assessment: An Operational Guide to the ISO Standards; School of SystemEngineering, Policy Analysis and Management, Delft University of Technology: Delft, The Netherlands, 2001.

Hoekstra, A.Y.; Chapagain, A.K.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011.

FAO. Database CROPWAT. 2010. Available online: https://www.fao.org/land-water/databases-and-software/cropwat/en/ (accessed on 9 October 2023).

Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998.

Xin, D.; Wang, S.; Chen, B. The Blue, Green and Grey Water consumption for crop Production in Heilongjiang. Energy Procedia 2019, 158, 3908–3914.}

RVOI :
https://rvoi.org/BioLifeSci/Jun/2024/665d799407d2b

DOI :
https://doi.org/10.3390/soilsystems7040109

Scan this QR code :
Up Next
No image